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A linear subspace G of a normed linear space E is said to be proximinal if
every x E E has at least one element of best approximation go E G (Le., such
that II x - go II = infueG II x - gil).

lt is known (see e.g. [7, p. 100, Corollary 2.1']) that if G is a reflexive
Banach space, then G is proximinal in every superspaceE(i.e., in every normed
linear space E containing G as a subspace). Recently Pollul has proved (see
[6,3]) that the converse is also true, namely, each nonreflexive Banach space
can be embedded isometrically as a nonproximinal hyperplane in another
Banach space. However, his proof has used the deep theorem of James [4]
(for which only difficult proofs are known today) that on every nonreflexive
Banach space G there exists a continuous linear functional which does not
attain its supremum on the unit cell of G. In the present paper we want to
propose a different and more elementary proof, which does not make use of
James's theorem. For simplicity we shall assume that the scalars are real;
the result also holds for complex scalars, with obvious changes in the proof.

A relevant result related to this problem was obtained by Klee, who has
proved [5, Theorem 1] that if E is a nonreflexive Banach space, then for every
(closed) hyperplane G in E there exists an equivalent norm on E such that
in this new norm Gis nonproximinal. (We mention that in [5, Theorem 2],
a slightly more general result concerning closed linear subspaces instead of
hyperplanes was also given, again for an equivalent norm on E). However,
this does not solve the problem, since the equivalent norm on E constructed
in [5] induces a different norm on G. We shall prove the result by slightly
modifying the construction of [5], so as to obtain an equivalent norm on E
which induces a norm on G coinciding with the initial norm.

THEOREM. A normed linear space G is proximinal in every superspace E if
and only ifG is a reflexive Banach space.
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Proof The sufficiency part was mentioned above. Conversely, observe
that a normed linear space G which is proximinal in every superspace must
be complete, i.e., a Banach space, since every noncomplete normed linear
space is nonproximinal in its completion. Thus, it remains only to prove that
if G is a nonreflexive Banach space, then there exists a superspace E of G such
that G is nonproximinal in E.

Let E = G X R, where R denotes the field of real numbers, or, in other
words, let E be an arbitrary Banach space containing G as a hyperplane.
Then, since Gis nonreflexive, by a theorem of Smulyan (see e.g. [1, p. 433,
Theorem 2]) there exists a decreasing sequence Cl J C2 J ... of bounded
closed convex subsets of G such that n:=l Cn = 0 (=the empty set). We
may assume, without loss of generality, that Cl C Co , where

Co = {y E Gill y [I ~ I}. (1)

Let C_n = -Cn(n = 1,2,...) and let x E E be such that II x II < 2 and
dist(x, G) > 1. Set

C = U [Cn + (sign n)(1 - 1/2 1nl ) x]
-co<n<oo

(2)

and let B = <co) C, the closed convex hull of C. Then, similarly to the
argument of [5], it follows that the Minkowsky functional

II xiiI = inf A
,1>0
x€,1B

(x EE) (3)

of B is an equivalent norm on E, in which G is nonproximinal. Thus, it
remains to prove that II y III = II y II for all y E G, or, equivalently, that

BnG=Co ' (4)

The inclusion Co C B n G is obvious by (1) and (2). In order to prove the
opposite inclusion, consider the closed convex set

A = Co + {Ax I -00 < A < oo}.

Since Cn C Co and C-n = -Cn C -Co = Co (n = 1,2,...), we have

(5)

Cn + (sign n)(1 - 1/2 1nl ) x C A (-00 < n < 00)

whence, by (2), B = <co) C CA. However, A n G C Co, since for any
z = y + Ax E A n G (where y E Co) we have Ax = z - Y E G - Co C G,
whence A= 0 (because dist(x, G) > 1) and hence z = y E Co' Consequently,

B n G CAn G C Co ,

and thus we have (4), which completes the proof.
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Remark 1. The difference between the above construction and that of
[5] consists in the fact that in [5] the set Co defined by (1) is replaced by
Co' = {x E E III x II ~ I}, the unit cell of the wole space E. This ensures that
Co' C B, but makes possible also the situation when B n G =1= Co' n G = Co
(which can happen when there exists no linear projection of norm 1 of E
onto G). In the above construction we have in general only (XoCo' C B for
some (xo with 0 < (Xo ~ 1 (this follows from OI.oCo' C <co>{-C1 - (1/2),
Co, C1 + (I/2)}, which holds because G is a hyperplane in E and x E E\G),
but (4) is ensured.

Remark 2. The above theorem disproves the claim made in [2, p.l19],
that any conjugate Banach space G = F* is proximinal in every superspace E.
The error in the proof of [2] consists in the assertion that for x E E\F* the
closed cells S with center x and radius dist(x, F*) + (lin) intersect F* in
o(F*, F)-compact sets; in fact, it is easy to give counter-examples even with
this intersection containing some cell of F*.

The above claim about conjugate spaces was used in [2] to derive the
following statement [2, p. 118, Proposition 5, (8)]: If E is a normed linear
space and G1 , G2 are subspaces of E such that G1 ::J G2 , G2 is proximinal in
E and G1/G2 is a conjugate Banach space F*, then G1 is proximinal in E. The
following is a counter-example: Let Eo = [1, G1 = {x = {gn} E [1 I g1 = a},
G2 = [e2] = the line {a, A, 0, o,...} I - 00 < A < oo}, and let E be the space
Eo = [1 endowed with an equivalent norm for which the hyperplane G1 is not
proximinal, but which induces the same norm on G1 as Eo. Then G2 is
proximinal in E (since dim G2 = 1) and

where == means linear isometry, but G1 is not proximinal in E.

Note. Wulbert has observed that our last example can be replaced by the
trivial example of G1 = any nonproximinal conjugate space in a Banach space
E and G2 = {a}.
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